Pion Condensation in Holographic QCD

Dylan Albrecht The College of William & Mary

August 28, SUSY11

Outline of Talk

- Motivation.
- Chiral Lagrangian + Isospin Chemical Potential
- Holographic QCD + Isospin Chemical Potential
- Boundary Conditions
- Conclusions.

Motivation:

(M.G.Alford *et al. 2008*)

- Neutron stars
 - Low temperature, large baryon and isospin number density.
- RHIC & LHC ALICE
 - High temperature, nonzero baryon and isospin density.

Motivation:

Why isospin chemical potential (μ_I)? Two main reasons:

- Isospin asymmetric matter exists!
- Can compare to Lattice calculations.

Motivation:

- Son and Stephanov (2000): Chiral Lagrangian with μ_I pions condense; phase transition is second order (@ T=0). \rightarrow based on symmetries.
- Kim, Kim and Lee (2007): No pion condensation in holographic QCD with μ_I .
 - But we expect the chiral Lagrangian is the low energy theory of holographic QCD.
- D.A. and Erlich (2010): Found pion condensation in holographic QCD, but with a first order phase transition.

Chemical Potential

Conserved charge with associated operator N ([N, H] = 0).

$$Z = \operatorname{Tr}\left[e^{-\left(\frac{H-\mu N}{T}\right)}\right]$$

For baryon number, the symmetry is U(1). $N_B = \int d^3x \bar{\psi} \gamma^t \psi$. If we gauge the symmetry, then $\mathcal{L} \supset \bar{\psi} \gamma^t \psi A_t$.

 \Rightarrow to add μ_B we change

$$\partial_t \to \partial_t + i\mu_B$$
.

Chiral Lagrangian + μ_I

The pattern of symmetry breaking: $SU(2)_L \times SU(2)_R \to SU(2)_V$. The pions, $\Sigma = \exp[2i\pi^a T^a/f_\pi^2]$, transform as $\Sigma \to U_L \Sigma U_R^\dagger$.

The chiral Lagrangian + isospin chemical potential:

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^{2}}{4} \text{Tr} \left(\nabla_{\nu} \Sigma \nabla_{\nu} \Sigma^{\dagger} \right) + \frac{m_{\pi}^{2} f_{\pi}^{2}}{4} \text{Tr} \left(\Sigma + \Sigma^{\dagger} \right)$$

where
$$\nabla_t \Sigma = \partial_t \Sigma - i \frac{\mu_I}{2} \left[\sigma^3, \Sigma \right]$$
 and $\nabla_i = \partial_i$.

(Son & Stephanov, 2000).

Chiral Lagrangian + μ_I

4D Results

Summary of the results (Son & Stephanov, 2000):

• Pions condense when $\mu_I > m_\pi$:

$$\langle \pi^a \pi^a \rangle \simeq 2 f_\pi^2 \left(1 - \frac{m_\pi^4}{\mu_I^4} \right)$$

assuming $\pi^a\pi^a$ is small.

Number density

$$n_I = \mu_I f_\pi^2 \left(1 - \frac{m_\pi^4}{\mu_I^4} \right).$$

AdS/CFT

Recipe for model building:

AdS	\longleftrightarrow	CFT
Fields	\longleftrightarrow	Operators
Gauge fields in bulk	\longleftrightarrow	Global Symmetry
KK modes in bulk	\longleftrightarrow	States of CFT

We start with $SU\left(2\right)_L \times SU\left(2\right)_R$ gauge theory with bifundamental field X:

$$S = \int d^5 x \sqrt{g} \, {\rm Tr} \left\{ |DX|^2 + 3 \, |X|^2 - \frac{1}{4g_5^2} \left(F_L^2 + F_R^2 \right) \right\},$$

where X is dual to $\bar{q}q$.

We start with $SU\left(2\right)_L \times SU\left(2\right)_R$ gauge theory with bifundamental field X:

$$S = \int d^5 x \sqrt{g} \, {\rm Tr} \left\{ |DX|^2 + 3 \, |X|^2 - \frac{1}{4g_5^2} \left(F_L^2 + F_R^2 \right) \right\},$$

where X is dual to $\bar{q}q$.

A slice of AdS space:

$$ds^{2} = \frac{1}{z^{2}} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2} \right), \qquad \epsilon \leq z \leq z_{m},$$

where ϵ plays the role of UV cutoff and z_m cuts off the geometry – modeling confinement.

Pattern of chiral symmetry breaking: m_q provides explicit breaking, $\langle \bar{q}q \rangle$ spontaneous breaking \Rightarrow

$$X_0 = \frac{1}{2} \left(m_q z + \sigma z^3 \right).$$

Pattern of chiral symmetry breaking: m_q provides explicit breaking, $\langle \bar{q}q \rangle$ spontaneous breaking \Rightarrow

$$X_0 = \frac{1}{2} \left(m_q z + \sigma z^3 \right).$$

Similarly, V_{μ}^{a} is dual to J_{μ}^{a} . Since μ_{I} sources number density, \Rightarrow

$$V_t^3 = \mu_I.$$

We add the pion fluctuations

$$X(x,z) = (X_0 + S(x,z))e^{i2\pi^a(x,z)T^a},$$

where S is the scalar and π^a are the pions.

We add the pion fluctuations

$$X(x,z) = (X_0 + S(x,z))e^{i2\pi^a(x,z)T^a},$$

where S is the scalar and π^a are the pions.

KK decomposition: $\pi^a(x,z)=\sum \pi^a_n(x)\psi_n(z)$, and similar for S(x,z). We integrate out heavy physics, assuming

$$\pi^a(x,z) \to \pi^a(x)\psi(z)$$
, and $S(x,z) \to 0$.

We add the pion fluctuations

$$X(x,z) = (X_0 + S(x,z))e^{i2\pi^a(x,z)T^a},$$

where S is the scalar and π^a are the pions.

KK decomposition: $\pi^a(x,z)=\sum \pi^a_n(x)\psi_n(z)$, and similar for S(x,z). We integrate out heavy physics, assuming

$$\pi^a(x,z) \to \pi^a(x)\psi(z)$$
, and $S(x,z) \to 0$.

Then

$$X(x,z) \to X_0 e^{i2\pi^a(x)\psi(z)T^a}$$
.

We impose a consistent set of boundary conditions. ⇒ A good Sturm-Liouville problem.

GOR relation:

$$m_\pi^2 f_\pi^2 = 2m_q \sigma$$

 \rightarrow We expect the 4D effective theory to be the chiral Lagrangian.

Comparing to the Chiral Lagrangian

The effective 4D Lagrangian:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{a} - \frac{1}{2} \left(m_{\pi}^{2} - \mu_{I}^{2} \right) \left(\pi^{1} \pi^{1} + \pi^{2} \pi^{2} \right) - \frac{1}{2} m_{\pi}^{2} \pi^{3} \pi^{3} + \mu_{I} \left(\partial_{t} \pi^{1} \pi^{2} - \partial_{t} \pi^{2} \pi^{1} \right).$$

Going to quartic order in $\pi^a \Rightarrow \left[\langle \pi^a \pi^a \rangle \& n_I \right]$:

Comparing to the Chiral Lagrangian

The effective 4D Lagrangian:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{a} - \frac{1}{2} \left(m_{\pi}^{2} - \mu_{I}^{2} \right) \left(\pi^{1} \pi^{1} + \pi^{2} \pi^{2} \right) - \frac{1}{2} m_{\pi}^{2} \pi^{3} \pi^{3} + \mu_{I} \left(\partial_{t} \pi^{1} \pi^{2} - \partial_{t} \pi^{2} \pi^{1} \right).$$

Going to quartic order in $\pi^a \Rightarrow \boxed{\langle \pi^a \pi^a \rangle \& n_I}$:

From 5D

Standard 4D

$$\langle \pi^a \pi^a \rangle = \frac{3}{4} 2 f_\pi^2 \left(1 - \frac{m_\pi^4}{\mu_I^4} \right) \qquad \qquad \langle \pi^a \pi^a \rangle = 2 f_\pi^2 \left(1 - \frac{m_\pi^4}{\mu_I^4} \right)$$

Comparing to the Chiral Lagrangian

Including the coupling to the gauge fields:

$$n_I = \mu_I f_\pi^2 \frac{1}{\eta} \frac{3}{4} \left(\alpha^2 - \frac{m_\pi^4}{\mu_I^4} \right)$$
 v.s. $n_I = \mu_I f_\pi^2 \left(1 - \frac{m_\pi^4}{\mu_I^4} \right)$

An Important Piont

Looking at the z-derivative term of the 5D Lagrangian,

$$\mathcal{L} \supset \partial_z X \partial_z X^{\dagger}.$$

If
$$X o \exp{[2i\pi^a(x)\psi(z)T^a]}$$
 ,

$$\partial_z X \partial_z X^{\dagger} \to (\partial_z \psi(z))^2 \pi^a(x) \pi^a(x)$$

with no higher order pion terms.

An Important Piont

Looking at the z-derivative term of the 5D Lagrangian,

$$\mathcal{L} \supset \partial_z X \partial_z X^{\dagger}.$$

If $X o \exp\left[2i\pi^a(x)\psi(z)T^a\right]$,

$$\partial_z X \partial_z X^{\dagger} \to (\partial_z \psi(z))^2 \pi^a(x) \pi^a(x)$$

with no higher order pion terms.

Appears as though the 4D effective theory is

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} \text{Tr} \left(\nabla_{\mu} \Sigma \nabla^{\mu} \Sigma^{\dagger} \right) - \frac{m_{\pi}^2}{2} \pi^a \pi^a.$$

An Important Piont

Looking at the z-derivative term of the 5D Lagrangian,

$$\mathcal{L} \supset \partial_z X \partial_z X^{\dagger}.$$

If $X o \exp\left[2i\pi^a(x)\psi(z)T^a\right]$,

$$\partial_z X \partial_z X^{\dagger} \to (\partial_z \psi(z))^2 \pi^a(x) \pi^a(x)$$

with no higher order pion terms.

Appears as though the 4D effective theory is

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} \text{Tr} \left(\nabla_{\mu} \Sigma \nabla^{\mu} \Sigma^{\dagger} \right) - \frac{m_{\pi}^2}{2} \pi^a \pi^a.$$

 \rightarrow new form for X? Let's try $X = \frac{m_q z}{2} + (\frac{\sigma z^3}{2} + S)e^{2i\pi}$.

New X

With $X=\frac{m_qz}{2}+\left(\frac{\sigma z^3}{2}\right)e^{2i\pi}$, the action has the form:

$$I = \int d^5x \operatorname{Tr} \left\{ \frac{\sigma^2 z^3}{4} (\partial_{\mu} U \partial^{\mu} U^{\dagger} - \partial_z U \partial_z U^{\dagger}) \right\} - \int d^4x \operatorname{Tr} \left\{ \frac{m_q \sigma}{4} (U + U^{\dagger}) \big|_{z_m} \right\},$$

where $U = e^{2i\pi}$.

Boundary term looks like the chiral Lagrangian mass term.
 Deriving GOR in similar fashion to before gives

$$m_{\pi}^2 f_{\pi}^2 = -m_q \sigma.$$

New X

With $X=rac{m_qz}{2}+\left(rac{\sigma z^3}{2}
ight)e^{2i\pi}$, the action has the form:

$$I = \int d^5x \operatorname{Tr} \left\{ \frac{\sigma^2 z^3}{4} (\partial_{\mu} U \partial^{\mu} U^{\dagger} - \partial_z U \partial_z U^{\dagger}) \right\} - \int d^4x \operatorname{Tr} \left\{ \frac{m_q \sigma}{4} (U + U^{\dagger}) \big|_{z_m} \right\},$$

where $U = e^{2i\pi}$.

Boundary term looks like the chiral Lagrangian mass term.
 Deriving GOR in similar fashion to before gives

$$m_{\pi}^2 f_{\pi}^2 = -m_q \sigma.$$

 \Rightarrow we should take $m_q \rightarrow -2m_q$.

New X ($m_q \rightarrow -2m_q$)

It turns out that $\psi(z) \approx 1$ over the entire interval:

New X ($m_q \rightarrow -2m_q$)

Changing to $X=-m_qz+(\frac{\sigma z^3}{2})e^{2i\pi}$, evaluating the action on the linearized EOMs, and performing the z-integrals we get

$$I = \int d^5x \operatorname{Tr} \left\{ \frac{\sigma^2 z^3}{4} (\partial_\mu U \partial^\mu U^\dagger - \partial_z U \partial_z U^\dagger) \right\}$$

$$+ \int d^4x \operatorname{Tr} \left\{ \frac{m_q \sigma}{2} (U + U^\dagger) \big|_{z_m} \right\}.$$

$$\downarrow I = \int d^4x \operatorname{Tr} \left\{ \frac{f_\pi^2}{4} \partial_\mu U \partial^\mu U^\dagger + \frac{m_\pi^2 f_\pi^2}{4} (U + U^\dagger) \right\}.$$

But why do we need to change the background? (BCs)

An Example

Consider the Lagrangian:

$$\mathcal{L} = \frac{1}{2}\partial_N \phi_1 \partial^N \phi_1 + \frac{1}{2}\partial_N \phi_2 \partial^N \phi_2 - \frac{1}{2}M^2(\phi_1^2 + \phi_2^2),$$

with boundary conditions in the compact direction

$$\delta\phi_1=0, \quad {\rm and} \qquad \partial_z\phi_2=0.$$

Transforming the fields $\phi_{\pm}=\frac{1}{\sqrt{2}}(\phi_1\pm\phi_2)\Rightarrow$

$$\delta \phi_+ = -\delta \phi_-, \quad \text{and} \qquad \partial_z \phi_+ = \partial_z \phi_-.$$

What We've Found

Compare the two:

$$X = \left(\frac{1}{2}(m_q z + \sigma z^3) + \tilde{S}\right)e^{2i\tilde{\pi}} \quad \text{V.S.} \quad X = \frac{m_q z}{2} + (\frac{\sigma z^3}{2} + S)e^{2i\pi}.$$

- Go from $(S,\pi) \to \left(\tilde{S}(S,\pi), \tilde{\pi}(S,\pi)\right)$.
- Different boundary conditions nonlinear, mixing fields. E.g. $\delta S=0 \Rightarrow \delta \tilde{S}=-\delta f(\tilde{S},\tilde{\pi}).$
- With these BCs, we need to change the background for both $\mathscr{L}(\tilde{S},\tilde{\pi})$ and $\mathscr{L}(S,\pi)$; $m_q\to -2m_q$.
- ullet And expect full symmetry is manifest in both forms for X.

What We've Found

Compare the two:

$$X = \left(\frac{1}{2}(m_qz + \sigma z^3) + \tilde{S}\right)e^{2i\tilde{\pi}} \quad \text{ V.S. } \quad X = \frac{m_qz}{2} + (\frac{\sigma z^3}{2} + S)e^{2i\pi}.$$

- Go from $(S,\pi) \to \left(\tilde{S}(S,\pi), \tilde{\pi}(S,\pi)\right)$.
- Different boundary conditions nonlinear, mixing fields. E.g. $\delta S=0 \Rightarrow \delta \tilde{S}=-\delta f(\tilde{S},\tilde{\pi}).$
- With these BCs, we need to change the background for both $\mathscr{L}(\tilde{S},\tilde{\pi})$ and $\mathscr{L}(S,\pi)$; $m_q\to -2m_q$.
- And expect full symmetry is manifest in both forms for X.
- \Rightarrow Choose $X = -m_q z + (\frac{\sigma z^3}{2} + S)e^{2i\pi}$.

To Conclude

- Original form (or actually any form) for X with some consistent set of boundary conditions will not always match to QCD.
- Holographic QCD matches on to QCD with a particular choice of non-obvious, nonlinear boundary conditions.
- New form for X works in a more transparent way.